Supplementary material

First Demonstration of Lithium Niobate Photonic Chip for Dense Wavelength-division Multiplexing Transmitters

Hongxuan Liu $^{1,\,\dagger}$, Bingcheng Pan $^{1,\,\dagger}$, Huan Li 1 , Zejie Yu 1,3,4 , Liu Liu 1,2,3,4 , Yaocheng Shi 1,2,3,4 , Daoxin Dai 1,2,3,4 ,

Table S1 summarizes the performances of several DWDM transmitters on different platform. Transmitters on SOI have been widely demonstrated based on the micro-ring modulator (MRM), which provides a compact footprint with a low capacitance. By optimizing the p-n junction, depletion-mode Si MRMs used in the transmitters have realized higher bitrate at 112 Gbps per channel [15]. However, the power consumption for modulators based on the plasma dispersion effect is still at the level of tens or even thousands fJ/bit in general, increasing the difficulty in large-scale transmitters. Heterogeneous III-V/Si metal-oxide-semiconductor capacitor (MOSCAP) MRRs have been developed to reducing the power consumption, while the EO bandwidth decreases [16]. Leveraging the Pockels effect of LN, the present LNOI photonic chip based on FP-cavity modulator outperforms other DWDM transmitters in Table S1 in EO bandwidth (> 67 GHz) and power consumption (5.1 fJ/bit) while being equally compact. In addition, the LNOI photonic chip has natural advantages in the linearity and insertion loss, which are not shown in the table.

¹ State Key Laboratory for Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou 310058, China

² Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.

³ Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Jiaxing 314000, China

⁴ Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing 314000, China

[†]These authors contributed equally to this work.

^{*}Daoxin Dai, dxdai@zju.edu.cn

Table S1 Comparison of DWDM transmitters on different platforms

ref	Material	Structures	Channel number	Channel Spacing (GHz)	EO BW (GHz)	Date rate per channel (Gbps)	Capacity (Gbps)	<i>V</i> _{pp} (V)	Power consumption a (fJ/bit)	Footprint ^b (mm ²)
[13]	Si	MRM	11	200 GHz	-	11	88	1.2	30	1.4×0.8 °
[11]	Si	MZM + double- ring filter	3	650 GHz	12.8	25	75	7	-	5.4 ×2.8
[10]	Si	MRM + double- ring filter	4	350 GHz	33.8	50	200	2	1220	1.5×1.0 °
[15]	Si	MRM	4	200 GHz	38.7	112	448	-	1860	0.64
[17]	Si	MRM	32	80 GHz	-	18	576	1.8	157	32 × (0.067×0.020)
[18]	Si	MDM ^d + RA-MZI ^e interleavers	16×4	100 GHz	-	16	1024	0.8	-	3 × 0.5 °
[19]	InP/Poly mer	EAML + AWG	8	400 GHz	35	100	800	1.5	-	19.5×15.3
[16]	III-V/Si	MOSCAPf MRM + RA-MZI interleavers	17	65 GHz	15	25	425	4	23	-
this work	LN	FP cavity	4	200 GHz	> 67	100	400	1.8	5.1	0.78×0.58

a Only the power consumption of modulating is included.
b Only the footprint of modulators and DWDM filters is calculated.
c Estimate the footprint of the transmitter based on the microscopic photo in the article.
d MDM: Microdisk modulator.
c RA-MZI: Ring-assisted Mach-Zehnder interferometer.
f MOSCAP: Metal-oxide-semiconductor capacitor.